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A general stability condition for vortices in a two-dimensional incompressible inviscid
flow field is presented. This condition is first applied to analyse the stability of
symmetric vortices behind elliptic cylinders and circular cylinders with a splitter plate
at the rear stagnation point. The effect of the size of the splitter plate on the stability
of the vortices is studied. It is also shown that no stable symmetric vortices exist
behind two-dimensional bodies based on the stability condition. The two-dimensional
stability condition is then extended to analyse the absolute (temporal) stability of
a symmetric vortex pair over three-dimensional slender conical bodies. The three-
dimensional problem is reduced to a vortex stability problem for a pair of vortices in
two dimensions by using the conical flow assumption, classical slender-body theory,
and postulated separation positions. The bodies considered include circular cones
and highly swept flat-plate wings with and without vertical fins, and elliptic cones
of various eccentricities. There exists an intermediate cone with a finite thickness
ratio between the circular cone and the flat-plate delta wing for which the symmetric
vortices change from being unstable to being stable at a given angle of attack. The
effects of the fin height and the separation position on the stability of the vortices are
studied. Results agree well with known experimental observations.

1. Introduction
Separation vortices over highly swept wings and slender bodies at high angles

of attack are known to greatly increase the lift coefficient. However, the initially
symmetric vortices may become asymmetric as the angle of attack is increased
beyond a certain value, causing large rolling moments in the case of swept wings or
large side forces in the case of slender bodies even at zero roll and yawing angles.
The transition of the vortex pattern from being symmetric to asymmetric is of major
importance for the performance and control of aircraft and other flight vehicles
capable of extreme manoeuvres. Much experimental, theoretical and computational
work has been performed on the understanding, prediction, and control of the onset
of vortex asymmetry (for example, Thomson & Morrison 1971; Keener & Chapman
1977; Zilliac, Degani & Tobak 1991; Pidd & Smith 1991; Degani 1992; Degani
& Levy 1992; Degani & Tobak 1992; Ericsson & Reding 1992; Levy, Hesselink,
& Degani 1996; Bernhardt & Williams 1998; and references cited therein). The
basic physical mechanism of this transition, however, is not clear. At least two
possible causes for the vortex asymmetry have been suggested mainly based on
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experimental investigations: (i) inviscid hydrodynamic instability of the symmetrically
separated vortices (Keener & Chapman 1977); (ii) asymmetric flow separation and/or
asymmetric flow reattachment on each side of the body (Ericsson 1992). There is at
present no general agreement on the mechanism involved in the creation of the flow
asymmetry.

Bird (1969) and Polhamus (1971) reported that initially symmetric leading-edge
vortices over slender delta wings became asymmetric at some high angle of attack
before vortex breakdown occurred on the wing. However, Stahl, Mahmood & Asghar
(1992) revealed that no strongly asymmetric vortex flow was observed before vortex
breakdown occurred on the wing in their water tunnel and wind tunnel experiments,
and pointed out that the earlier observed onset of vortex asymmetry by Bird (1969)
was possibly related to different shapes of the leading edge of the delta wing models.
The flat-plate wing model of Stahl et al. (1992) has sharp edges, while the flat-plate
wing model of Bird (1969) has rounded leading edges. Stahl et al. conjectured that
near the apex Bird’s wing probably had the shape of a more or less thick elliptic cone
rather than a thin flat-plate wing. However, Lim, Lua & Luo (2001) showed that the
shape near the apex may not be wholly responsible for the vortex asymmetry, with
a water tunnel test of flat-plate wings of ogive-shaped planform with different tip
and edge geometries, and that the edge geometry also played a crucial role. Ericsson
(1992) claims that the vortex asymmetry observed by Shanks (1963) over slender flat-
plate wings was probably caused by the asymmetric reattachment of the leading-edge
separated flow on the leeward side of Shanks’ models. There was a centreline spline
mounted on the leeward side of the flat-plate delta wing model of Shanks. Ericsson
argued: “The reattaching flow cannot find a stable stagnation point on the top of the
centerline spline. As a result, the stagnation point move to one side of the centerline
spline, forcing an asymmetry into the cross flow separation geometry, resulting in
asymmetric leading-edge vortices.”

It was found that the leeward side vortex flow asymmetry over bodies of revolution
could be suppressed by means of a fin between the vortices (Stahl 1990; Ng 1990) or
by flattening the nose into an elliptic cross-section (Edwards 1978).

Using numerical methods and the vortex line and vortex sheet models of inviscid and
incompressible flow Dyer, Fiddes & Smith (1982) and Fiddes & Williams (1989) found
asymmetric solutions as well as symmetric solutions for the vortex flow over slender
conical bodies even though the separation lines were postulated to be symmetric.
These and many other numerical investigations suggest that the appearance of vortex
asymmetry is an inviscid phenomenon (for example Lowson & Ponton 1992; Fiddes
1980).

Much work has been focused on experimental observation or numerical computa-
tion of the vortex motions behind slender bodies. There are, however, few analytical
stability studies on such vortex systems. Using an inviscid incompressible model,
Föppl (1913) showed analytically that the vortex pair behind a circular cylinder
can be stationary and is unstable to small anti-symmetric perturbations. Smith &
Clark (1975) showed that a vortex pair behind a two-dimensional flat plate cannot
be stationary. In the three-dimensional flow, Huang & Chow (1996) showed by an
analytical method that the vortex pair over a slender flat-plate delta wing can be
stationary and is stable to small perturbations for angles of attack up to about two
times the semi-apex angle of the wing. The present paper presents general stability
analyses of vortices in two dimensions and those over slender conical bodies in three
dimensions. A number of practical examples are studied and results compared with
experimental data wherever available.
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Föppl’s (1913) stability analysis of a symmetric vortex pair behind a circular
cylinder is a classic result that has been cited by many authors including Lamb
(1932), Milne-Thomson (1968), Goldstein (1938), and Saffman (1992, p. 43). Föppl’s
problem is revisited here, which leads to the derivation of a general stability condition
for vortices in two dimensions. This condition involves only the evaluation of the
divergence and Jacobian of a vortex velocity field and, therefore, can be easily tested
either analytically or by numerical computation when analytical expressions are
difficult or impossible to obtain. Computational results using finite differences are
validated for the circular cylinder case where analytic solutions are available. The
new stability condition is then used to study the stability of a pair of vortices behind
a circular cylinder with a splitter plate. It is found that there is a minimum plate
length that makes the vortices neutrally stable under anti-symmetric perturbations.
The stationary positions and stability of a pair of vortices behind an elliptical cylinder
is also investigated.

A conical flow theory is then presented by which the two-dimensional stability
condition can be made use of in the study of three-dimensional symmetric vortices
over slender conical bodies at high angles of attack. This theory along with the
two-dimensional vortex stability condition are subsequently applied to investigate the
absolute (temporal) stability of initially symmetric vortex flows over slender circular
cones and highly swept flat-plate delta wings with and without vertical fins, and slender
elliptic cones of various eccentricities. Results are compared with experimental data.

Zilliac et al. (1991), Degani & Tobak (1992), and Levy et al. (1996) argue, based on
experimental and computational results, that a convective instability is the preferred
mechanism for vortex asymmetry of the flow past long cylindrical bodies with conical
or ogive front ends. Small disturbances due to geometric imperfections at the nose
become amplified as the flow moves downstream in space. Such a spatial instability
where disturbances grow in one spatial direction is distinguished from the absolute
type of instability discussed in this paper where the growth or decay of disturbances
are described in temporal form. In its strict sense, the absolute type of stability
presented in this paper should be viewed as a necessary condition for the existence
of stable conical symmetric vortices.

2. Stability of vortices in two dimensions
2.1. Vortices behind a circular cylinder

Föppl (1913) studied the stability of a pair of vortices behind a circular cylinder
of unit radius in a uniform inviscid incompressible stream of velocity U as shown
in figure 1. Following Föppl’s notation, the pair of vortices are assumed to be at
ζ0 = ξ0 + iη0 and ζ 0 = ξ0 − iη0 in the complex domain. The complex velocity of the
flow field can be found by placing two image vortices inside the cylinder and using
the principle of superposition as follows:

u − iv = U

(
1 − 1

ζ 2

)
+

iΓ

2π

[
1

ζ − ζ0

+
1

ζ − 1/ζ0

− 1

ζ − ζ0

− 1

ζ − 1/ζ0

]
, (2.1)

where Γ is the strength (circulation) of the vortex and the cylinder radius is assumed
to be 1. In an inviscid flow, a concentrated vortex will move with the local flow
velocity. This velocity of the vortex at ζ0 can be found by removing the self-induced
velocity term due to the vortex itself. This is justified because a point vortex should
be viewed as the limit of a Rankine vortex filament with an infinitesimally small core
cross-section (see, for example, Saffman 1992, p. 22). At the centre of the vortex core,
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Figure 1. Vortices behind a circular cylinder and the Föppl line.

the velocity induced by the vortex itself is zero. For clarity, the subscript 0 is dropped
hereafter. Thus, the flow velocity at the centre of the vortex whose location is at
ζ = ξ + iη is

u − iv = U

(
1 − 1

ζ 2

)
+

iΓ

2π

[
1

ζ − 1/ζ
− 1

ζ − ζ
− 1

ζ − 1/ζ

]
. (2.2)

It must be pointed out that the above velocity field is no longer the original velocity
field of the flow represented by (2.1). The velocity field given by (2.1) must be
divergence free since it represents an incompressible flow. The velocity field represented
by (2.2), however, stands for the velocity at which a vortex placed in the flow field
will move as a function of its position. Notice also that as ζ changes, the positions of
other vortices including the vortex that pairs with the vortex under consideration and
the image vortices of the pair will also move to satisfy the symmetry requirement and
the wall boundary conditions. Consequently, the velocity field represented by (2.2)
should not be taken without proof to be necessarily divergence free. For convenience,
we will call it the vortex velocity field in this paper. More discussions on this are to
follow in the next section.

For the vortices to be stationary ζ cannot be allowed to have arbitrary values since
the flow velocity at ζ must be zero. By setting u and v in (2.2) to zero, it is found
that any pair of stationary vortices must be located on the curves η0 = ±(r2

0 − 1)/2r0,

where r0 = (ξ 2
0 + η2

0)
1/2

. These curves are called Föppl lines (see solid lines in figure 1).
Points on the Föppl lines are called stationary points. Vortices located at these points
will not move.

The question of stability arises when vortices are slightly perturbed from these
stationary points. Föppl studied this problem by decomposing any arbitrary such
perturbation into a symmetric and an anti-symmetric perturbation. He found that
the vortices were stable for symmetric perturbations, but unstable for anti-symmetric
perturbations. Unfortunately, his analysis on the symmetric perturbations was flawed.
On re-examination of the problem, the authors found that the vortices are only
neutrally stable for symmetric perturbations, as reported in a conference presentation
(Cai, Liu & Luo 2001a). It was brought to the authors’ attention by an anonymous
reviewer of this paper that in Smith (1973) a similar analysis had been performed
and the above mentioned error in Föppl’s paper corrected. Tang & Aubry (1997) also
discussed Föppl’s problem from a dynamical system point of view. It is interesting
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to note that Lamb (1932), in his classical book, cited only Föppl’s result on anti-
symmetric perturbations when discussing Föppl’s (1913) paper; so did Saffman (1992,
p. 43) in his book. Perhaps, they too had suspected Föppl’s analysis on the symmetric
perturbations. The readers are referred to Smith (1973) or Cai et al. (2001a) for
details regarding the correction of Föppl’s analysis. The next subsection focuses on
the derivation and application of a new generalized stability condition for the motion
of a vortex or a group of vortices.

2.2. A general stability condition

Consider a system of vortices in a two-dimensional flow. Assume one of the vortices
in the system is located at (x, y). As this vortex is moved in the physical plane, other
vortices in the system are assumed to move according to a given mode of motion, for
instance the symmetric or anti-symmetric mode of motion in the above subsection,
subject to given boundary conditions. The starting point for the general stability
condition to be discussed below is that given the flow boundary conditions and the
mode of vortex motion, one has already obtained, similar to (2.2) for the Föppl
problem, the vortex velocity (u, v) for the vortex under consideration, i.e. the velocity
at which the vortex will move as a function of its location (x, y). The stationary
points (x0, y0) for the vortex can be found by setting u(x, y) = 0 and v(x, y) = 0.
When the vortex is perturbed from its stationary point (x0, y0) and then released, its
motion is assumed to follow the vortex velocity (u, v). Let �x and �y denote its
small displacement from the stationary point. By expanding (u, v) around (x0, y0), we
find to first order

d

dt

[
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]
=

[
u

v

]
=



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∂u
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)
0(
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)
0

(
∂v
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)
0




[
�x
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]
, (2.3)

where the subscript 0 denotes values at the stationary point: (x0, y0). Define the
Jacobian and divergence of the vortex velocity field q = (u, v):

J =

∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣
, D = ∇ · q =

∂u

∂x
+

∂v

∂y
. (2.4)

It can be easily shown that the eigenvalues of the coefficient matrix in (2.3) are

λ1,2 = 1
2

[
D0 ±

(
D2

0 − 4J0

)1/2
]
. (2.5)

The stability condition for the vortex motion may then be summarized as in table 1
based on whether λ1,2 will yield growing solutions of �x or �y.

For the circular cylinder problem in the previous section, the analytical form of
u(x, y) and v(x, y) is relatively simple so that both the stationary points and the
stability conditions can be found analytically. For more complex problems, such as
the flow over a circular cylinder with a splitter plate and over ellipses, and also analyses
of three-dimensional problems to be presented later in this paper, a numerical search
for the stationary points and evaluation of the stability conditions may be more
convenient or necessary. A simple bisecting root-finding algorithm and the standard
fourth-order central finite-difference formula are used in this paper.
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D0 J0 Comment

Stable < 0 > 0

Neutral < 0 = 0 Non-oscillating
= 0 = 0 Non-oscillating
= 0 > 0 Oscillating

Unstable > 0 any
any < 0

Table 1. Stability condition for vortex motion.
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Figure 2. Divergence and Jacobian vs. vortex position under symmetric perturbations,
circular cylinder case.

Föppl considered the stability of the vortices under symmetric and anti-symmetric
perturbations. It is useful to point out that in the consideration of stability for
a pair of vortices, it is sufficient to consider only symmetric and anti-symmetric
modes of perturbations. Any arbitrary displacements of vortex 1 and vortex 2 on
the complex domain, (�Z1, �Z2), may always be decomposed as the sum of a
symmetric perturbation (�S,�S) and an anti-symmetric perturbation (�A, −�A),
where �S = (�Z1 + �Z2)/2 and �A = (�Z1 − �Z2)/2.

It is easily verified that the general stability condition listed in table 1 leads to
the same particular stability conditions derived by Föppl (1913) and later corrected
by Smith (1973) for the circular cylinder problem. As an example and a means
of validating our computational method, numerical computations are performed and
compared with the analytical results for the circular cylinder problem. Figures 2 and 3
show numerical and analytical values of D0 and J0 versus vortex position r0/a (a is the
radius of the circular cylinder) for the symmetric and anti-symmetric perturbations,
respectively. For simplicity, D0 and J0 here and from this point on denote the
dimensionless quantities D0a/U and J0a

2/U 2, respectively. The computational results
are indistinguishable from the analytical values. Clearly, the divergence D0 for both
the symmetric and anti-symmetric perturbations is zero. For the case of symmetric
perturbations shown in figure 2, it is found that J0 > 0, which indicates that the
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Figure 3. Divergence and Jacobian vs. vortex position under anti-symmetric perturbations,
circular cylinder case.

vortices are in a neutrally stable state with an oscillatory motion near the stationary
points. The oscillation attenuates as the vortices move farther from the cylinder. For
the anti-symmetric perturbations shown in figure 3, it is found that J0 < 0, thus the
vortices are always unstable. The vortices are more unstable when they are close to
the cylinder and gradually approach neutral stability as they move away from the
cylinder.

It is noted again at this point that the vortex velocity functions u(x, y) and v(x, y)
considered here are not the original incompressible velocity field. They represent the
velocity at which a vortex in the flow field will move when its spatial location is at
(x, y). As pointed out in the discussions following (2.2), this vortex velocity field, in
general, may not be divergence free. It is interesting to find, however, that both the
analytic and the computational results shown above for the symmetric vortex pair of
the Föppl problem give zero divergence of the vortex velocity field at any stationary
point (x0, y0) of the vortex, i.e. D0 = 0 for both the symmetric and the anti-symmetric
perturbations. It is observed numerically in the following subsections and proven in
the Appendix that this property is true for any two-dimensional flow fields that are
obtained from the circular cylinder flow through a series of conformal mappings
if the vortex system is initially placed symmetrically.† Thus, we conclude that a
symmetric vortex pair in any two-dimensional incompressible flow is either unstable or
neutrally stable, but never absolutely stable. It is easily verified, however, that D0 �= 0
if the vortex pair is not symmetrically placed as in the Föppl problem, which is of
significance in the study of asymmetric vortices. In addition, D0 �= 0 when the stability
analysis is extended to treat three-dimensional problems as will be shown later in the
paper.

2.3. Vortices behind a circular cylinder with a rear splitter

In this section, the analysis is extended to include a splitter plate at the rear end of
a circular cylinder of radius a, where the height of the splitter plate h is measured

† This property was conjectured to be true in the original manuscript of this paper. The authors
completed the proof in the Appendix based on a lead suggested by an anonymous reviewer of the
manuscript.
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Figure 4. Circular cylinder with a rear splitter plate.

from the origin, i.e. the end point of the plate is at x = h (see figure 4). In a three-
dimensional situation, this corresponds to the case of having a vertical fin attached
to a body of revolution. Since a splitter plate has no effect on the flow so long as the
flow is symmetric, the result for the circular cylinder under symmetric perturbations
remains unchanged for the case with a splitter plate, that is, the vortices will be
neutrally stable. The splitter plate, however, will affect the flow under anti-symmetric
perturbations. Intuitively, it reduces the ‘communication’ between the top and bottom
vortices. It is interesting to see whether this reduction in ‘communication’ may reduce
the instability due to anti-symmetric perturbations that exists in the circular cylinder
case, and if so, whether there is a minimum length of the splitter plate that makes
the vortices stable or neutrally stable.

The velocity field around a circular cylinder of radius a with the splitter plate in
the complex plane Z = x + iy can be easily found by using a conformal mapping
from the flow past a circular cylinder of radius σ without the splitter plate in the
plane ζ = ξ + iη. That is

1

2

(
Z +

a2

Z

)
− Xm =

1

2

(
ζ +

σ 2

ζ

)
, (2.6)

where Xm = (a − h)2/4h and σ = (a + h)2/4h.
Suppose the symmetric stationary vortices undergo small arbitrary displacements,

i.e. Z0 and Z0 change to Z1 and Z2, respectively. The circulation of the vortices Γ

may be assumed unchanged for a short period of time immediately after the small
displacement. When Z1 and Z2 are not symmetric to the real axis x, a vortex will be
shed from the sharp edge of the splitter plate to satisfy the finite velocity condition
at the sharp edge. Under small perturbations, however, the strength of this vortex is
of the order Γ |�Z|/a, much weaker than that of the original symmetric vortex pair.
Therefore, the shed vortex can be ignored in the following stability analysis for the
anti-symmetric perturbation.

The vortex velocity at Z1 is obtained by a limiting process (see Rossow 1978):

u− iv =
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1 − σ 2

ζ 2
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+
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2π
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)
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, (2.7)
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Figure 5. Divergence and Jacobian vs. height of splitter plate for circular cylinder with a
splitter plate, r0/a = 2, θ0 = 53.4◦.

where (dζ/dZ)1 and (d2Z/dζ 2)1 denote values at ζ = ζ1 or Z = Z1, which can be
easily obtained by differentiating (2.6). The symmetric stationary points (x0, y0) of the
vortices can be found by setting the above equation to zero for Z1 = Z0 and Z2 = Z0.

The stability conditions in § 2.2 are then applied to (2.7) in terms of Z = Z1. The
perturbation is decomposed into symmetric and anti-symmetric perturbations,

symmetric: Z1 = Z0 + �Z = Z, Z2 = Z0 + �Z = Z, (2.8)

anti-symmetric: Z1 = Z0 + �Z = Z, Z2 = Z0 − �Z = 2Z0 − Z, (2.9)

where �Z = �x + i�y is the perturbation, and |�x| � a, |�y| � a. The strength of
the vortices is kept constant during the perturbation because the perturbations are
considered small and instant. After inserting (2.8) and (2.9) into (2.7), we can then
easily calculate the divergence and Jacobian of the vortex velocity field (u, v) either
analytically or numerically.

For this example, fourth-order-accurate finite-difference formulae are used in
evaluating D0 and J0 with 64-bit arithmetic for extra accuracy. Notice that the
stationary points of the vortices for this case remain on the same Föppl line as that
for the circular cylinder in § 2.1. We consider the particular case where the stationary
point is at x0/a = 551/2/4, y0/a = 3/4, and r0/a = 2. The corresponding vortex
strength at this point is Γ/Ua = 45π/16. The corresponding symmetric separation
point is at θ0 = 53.4◦. The separation angle θ0 is measured anti-clockwise from the
rear end of the cylinder. The separation condition on the body used here is that
the velocity at the separation point vanishes and the velocities on both sides of the
separation point are towards the point.

As mentioned at the end of the previous subsection, the divergence of the vortex
velocity field for this case is zero. Direct numerical computations show values of the
order of 10−20 for U = 1 and a = 1. Therefore, the stability of this case depends
on the sign of J0. The vortices are unstable when J0 < 0, and neutrally stable when
J0 � 0. The relative strength of stability or instability can be inferred from the size
of J0. Figure 5 shows the calculated divergence and Jacobian at the above x0 and y0

versus height of the splitter plate. Clearly, the divergence is zero for both symmetric
and anti-symmetric perturbations. The symmetric result should be independent of the
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Figure 6. Vortex position and critical height of splitter plate as function of separation angle
for a circular cylinder with a splitter plate.

height of the splitter plate, which is confirmed by the constant positive J0 shown in
figure 5.

For the anti-symmetric perturbations, J0 is less than zero for splitter plates that are
shorter than approximately 1.7 times the radius of the cylinder, i.e. h/a < 2.7. The
vortices become neutrally stable when the length of the splitter plate increases beyond
that critical value. As the length of the splitter plate goes to infinity, J0 approaches the
value of the symmetric perturbation because the splitter plate restrains the asymmetric
motion of the vortices. Note also that, as the length of the splitter plate increases
from zero, the vortices initially become less stable (J0 decreases) until the plate length
reaches about 0.8 times the radius of the circular cylinder. At that point the value of
J0 begins to increase. It is not until the length of the plate reaches about 1.4a that the
addition of the splitter plate enhances the stability compared to without the splitter
plate. In other words, when the splitter plate is not long enough, it has an opposite
effect, i.e. the addition of the splitter plate makes the symmetric stationary vortex pair
more unstable under anti-symmetric perturbations. No two-dimensional experimental
data have been found yet by the authors to support this finding. However, similar
effects are predicted and shown to agree with known experimental observations for
three-dimensional flows over circular cones presented later in the paper.

Figure 6 shows the vortex position x0/a and the critical height h/a of the splitter
plate as a function of the separation angle θ0. Both h/a and x0/a increase with an
increase of θ0, and the critical height h/a is always greater than x0/a. Physically, the
splitter plate must extend further downstream than the vortices in order to cut off
the ‘communication’ between the two vortices as the vortices move away from the
cylinder. This agrees with the experimental results of Roshko (1961), which showed
that the main effect of the splitter plate with h/a = 6.3 and θ0 about 75◦ is the
suppression of the alternating vortex shedding and removal of the peak frequency
in the spectrum. Figure 6 predicts that the critical height of the splitter plate is
h/a = 8.1412 for θ0 = 75◦. The above results provide guidance in the choice of the
height of the splitter plate required to suppress the alternating vortex shedding behind
the circular cylinder.



Stability of vortices over slender bodies 75

0.75002

0.75001

0.75000

0.74999

1.85403 1.85404 1.85405
x/a

1.85406 1.85407 1.85408

y
a

Figure 7. Velocity of vortex under anti-symmetric perturbations for the flow over a circular
cylinder with a splitter plate, h/a = 2, r0/a = 2, θ0 = 53.4◦ (unstable case).
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Figure 8. As figure 7 but for h/a = 4 (neutrally stable case).

Although the formulae to calculate the vortex velocity for this case are different
and more complex than those for the pure circular cylinder case, it is expected that
the results for this case must reduce to those of the pure circular cylinder case as the
length of the splitter plate becomes zero. Indeed, from figure 5, the calculated value
of J0 is 0.311523 for symmetric perturbations and −0.223630 for anti-symmetric
perturbations when h/a = 1, which are identical to the analytical values for the
circular cylinder to the 6th significant digit.

In order to appreciate the physical meaning of the stability conditions in terms
of D0 and J0, figures 7 and 8 show the vortex velocity fields for anti-symmetric
perturbations for two cases with plate heights h/a = 2 and h/a = 4, respectively.
It is known from figure 5 that the former is unstable and the latter is neutrally
stable. Clearly, figures 7 and 8 show a zero vortex velocity at the stationary vortex
point under consideration. Since the divergence of the velocity field D0 = 0 at the
stationary point, some velocities must move out from this stationary point if others
move inwards, which is the case when J0 < 0. It is the existence of the diverging
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Figure 9. Vortex position and strength vs. separation angle for an elliptic cylinder, τ = 0.1.

velocities that leads to instability. For the case with h/a = 4, the splitter plate is
long enough to make the vortex neutrally stable under anti-symmetric perturbations.
Since D0 is still zero, J0 > 0 indicates that the velocity vectors form circles around the
stationary point as is confirmed by figure 8. In this case, the vortex is in an oscillatory,
neutrally stable condition around the stationary point.

As proven in the Appendix, the divergence of the velocity field of the motion of a
vortex in a symmetric vortex configuration placed in a two-dimensional incompressible
flow is always zero at its stationary points. Therefore, vortices in a two-dimensional
incompressible flow can be at best neutrally stable. However, if D0 could be less than
zero, there would exist the possibility that the vortex velocity vectors may all be drawn
towards the stationary point when J0 > 0, leading to a stable vortex configuration.
On the other hand, when D0 > 0, the vortex must be unstable regardless of the value
of J0 because of the fact that some velocity vectors must leave the stationary point
when the divergence is positive. Such situations exist in three dimensions as will be
shown later.

2.4. Vortices behind an elliptic cylinder

The circular cylinder in figure 4 is in this case replaced by an ellipse with one of its
axes placed perpendicular to the free-stream flow and the other along the free-stream
flow. The lengths of these two axes are assumed to be 2b and 2c, respectively. The
thickness ratio of the elliptic cylinder is defined as τ = c/b. The two vortices behind
the elliptic cylinder are at Z0 = x0 + iy0 and Z0 = x0 − iy0.

The vortex velocity field for this case is given by (2.7) with U replaced by U/2
and σ = 1. However, the transformation from ζ to Z is now Z = (ζ + λ/ζ )/2, where
c = (1 + λ)/2 and b = (1 − λ)/2.

Figure 9 shows the stationary position and the strength of the vortices versus
the flow separation angle on the surface of the elliptic cylinder for τ = 0.1. Again,
the separation angle is measured anti-clockwise from the rear stagnation point of the
cylinder. It is found for this case that the stationary vortices must be placed infinitely
far away from the cylinder as the separation point on the cylinder moves towards the
crest, i.e. when θ0 approaches 90◦. This is true for any value of τ . This means that
it is not possible to find stationary points of the vortices when separation occurs at
the top and bottom extremes of the elliptic cylinder. This agrees with the finding by
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Smith & Clark (1975) that no stationary points exist for a flat plate normal to the
flow where separation must occur at the ends of the plate, i.e. θ0 = 90◦, in order to
satisfy the Kutta condition. The ellipse approaches a vertical flat plate as τ → 0.

Figure 10 shows the D0 and J0 for this case. It is noticed again that D0 is zero for
both the symmetric and anti-symmetric perturbations. Therefore, the vortex system
is at most neutrally stable. For anti-symmetric perturbations, J0 is always less than
zero. Therefore, the vortices are unstable to small anti-symmetric perturbations. On
the other hand, J0 is always greater than zero for symmetric perturbations, and thus
the vortices are neutrally stable to small symmetric perturbations. These conclusions
for an elliptic cylinder are qualitatively identical to those for the circular cylinder
case.

Figure 11 shows the result for an elliptic cylinder with τ = 6. It is seen that the
stationary symmetric vortex pair is unstable to small anti-symmetric perturbations,
and thus may lead to possible asymmetric configurations or asymmetric vortex
shedding. This agrees with the wind-tunnel test results (Bradshaw 1970; also Van
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Dyke 1982, figure 32, p. 24) at a Reynolds number 4000 based on 2c. The experimental
results show that a laminar boundary layer separates at θ0 ≈ 8◦ and sheds alternating
vortices.

3. The vortex velocity for slender conical bodies
This section describes the assumptions and method to reduce the problem of the

three-dimensional potential flow over slender conical bodies to a two-dimensional
problem in the conical coordinate system so that the stability condition derived in
the above section can be readily applied.

Consider the flow past a slender conical body of an arbitrary symmetric cross-
section at an angle of attack α and zero sideslip as shown in figure 12. The plane of
symmetry of the body Oxz coincides with the incidence plane of the flow. The body
may have a slender triangular flat-plate fin on the top and/or the lower surface of
the body in the plane of symmetry. The flow separates from the body surface along
symmetric separation lines with respect to the symmetry plane of the body. The flow
is assumed to be steady, inviscid, incompressible and conical.

Under the conical flow assumption, the separation lines OS1 and OS2 are assumed
to be rays starting from the body apex O as shown in figure 12. In a real flow, a pair
of vortex sheets erupts from the separation lines OS1 and OS2. The sheets extend
along the leeward side of the body and then roll tightly into two concentrated vortices
at a certain distance from the body. The distributed vortex sheets that connect the
separation lines and the two concentrated vortices are neglected since their strength is
in general much smaller than that of the two concentrated vortices. Such a simplified
model was used by Legendre (1953) and Adams (1953) and also Huang & Chow
(1996). As pointed out by Huang & Chow (1996), neglect of the distributed vortex
sheets causes errors in the calculation of the lift over the body but serves adequately
in a stability analysis. The two concentrated symmetric vortices can be approximated
as a pair of vortex lines OA1 and OA2, which are also assumed to be rays from the
body apex O under the conical flow assumption.

The inviscid incompressible flow considered in the above model is potential except
at the centres of the isolated vortices. The governing equation for the velocity potential
is the three-dimensional Laplace equation with zero normal flow velocity on the body
surface as the boundary condition. By the principle of superposition, the flow around
the body can be obtained by solving the following two flow problems: (i) the flow
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due to the normal component of the free-stream velocity; and (ii) the flow due to
the axial component of the free-stream velocity, both subject to zero normal velocity
at the wall. We denote the velocity field of the first problem by U1 and that of the
second problem by U2.

In the first problem, the slender body is placed normal to the cross-flow component
Un = U∞ sin α. Since the body is assumed to be slender, the velocity in the z-direction
due to three-dimensional effects can be neglected. The flow in each cross-section at z

may then be regarded as a two-dimensional flow across the local cross-sectional profile
governed by the two-dimensional Laplace equation with zero normal velocity at the
wall. A solution to this two-dimensional velocity field can be obtained by conformal
mapping or other analytical or numerical methods. For simple profiles such as circles
and ellipses with or without fins, U1 can be easily obtained by conformal mapping as
discussed in the previous section.

The second problem, that for U2, corresponds to the flow past a conical body with a
free-stream velocity Ua = U∞ cos α and zero angle of attack. As shown in figure 12,
consider the description of the same flow in two different but related coordinate
systems. The first is the conventional orthogonal system (x, y, z). The second is the
nonorthogonal conical coordinate system (x ′, y ′, r ′) = (x/s, y/s, z), where s is the semi-
span of the body at z in the (x, y)-plane, which is related to the semi-apex angle of
the body ε by s = z tan ε. The unit vectors of the two coordinate systems are then
related by: ex ′ = ex , ey ′ = ey , and er ′ = (xex + yey + zez)/(x

2 + y2 + z2)1/2.
Under the assumption of small perturbations for slender bodies, U2 can be described

in the first coordinate system as

U2(x, y, z) = Up(x, y; z) + Uaez, (3.1)

where Up(x, y; z) is a two-dimensional velocity vector in the (ex, ey)-plane with z

being a parameter for each cross-section of the body. By using the transformation
between the unit vectors in the two coordinate systems, U2 can be converted to

U2(x, y, z) = Up(x ′, y ′) + U c(x
′, y ′) + ur ′(x ′, y ′)er ′, (3.2)

where

ur ′(x ′, y ′) = Ua(x
2 + y2 + z2)1/2/z, (3.3)

U c(x
′, y ′) = −Un

K
(x ′ex ′ + y ′ey ′), (3.4)

and K is the Sychev similarity parameter (Sychev 1960)

K = tan α/ tan ε. (3.5)

Notice that Up is now written in (3.2) as functions of x ′ and y ′ only due to the conical
flow assumption.

The velocity potential for U2(x, y, z) satisfies the three-dimensional Laplace equa-
tion, subject to the boundary condition U2 · n = 0 at the body surface, where n is the
normal vector to the surface of the three-dimensional body. Consequently, Up is a
two-dimensional potential flow and can be obtained by solving the two-dimensional
Laplace equation in the (x ′, y ′)-plane subject to the two-dimensional wall boundary
condition

Up(x ′, y ′) · nc = −U c(x
′, y ′) · nc, (3.6)

where nc is the normal vector to the two-dimensional cross-sectional profile of the
body.
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The velocity U c(x
′, y ′) represents the flow velocity drawn towards the body axis

when the axial flow is decomposed into the velocity along the conical ray and the
velocity in the cross-sectional plane. At the surface of the body, the normal component
of this velocity must be cancelled by the potential field Up . Physically, Up represents
the displacement effect of a non-zero-thickness body. In the case of a circular cone,
the solution for Up is simply one single point source, which can be written in the
complex velocity format as

up − ivp =
Una

KZ
, (3.7)

where a is the radius of the cone at z. In the case of the triangular flat-plate wing,
up − ivp = 0 since the right-hand side of (3.6) is zero for a zero-thickness flat-plate
wing. For more complex geometries, Up can be obtained by a singularity method, e.g.
by distributing point sources within the body contour. The complex velocity at the
point Z = x + iy due to N point sources at Zj = xj + iyj can be written as

up − ivp =
1

2π

N∑
j=1

Qj

Z − Zj

, (3.8)

where Qj is the strength of the point sources and Qj (j = 1, 2, . . . N) are to be
determined by N simultaneous equations of the boundary condition on the body
contour.

Notice that U1 and Up(x, y; z) depend only on x ′ and y ′. On superposition, the
complete three-dimensional flow field is represented in the non-orthogonal conical
coordinate system as

U(x ′, y ′) = V (x ′, y ′) + ur ′(x ′, y ′)er ′, (3.9)

where

V (x ′, y ′) = U1(x
′, y ′) + Up(x ′, y ′) + U c(x

′, y ′). (3.10)

Notice that V (x ′, y ′) is a two-dimensional velocity vector field in the plane (ex ′ , ey ′)
and the ur ′(x ′, y ′)er ′ term in (3.9) is a velocity component in the ray direction er ′

which does not contribute to the flow velocity in the plane (ex ′ , ey ′). Consequently,
the stability of the flow system can be analysed by studying only the two-dimensional
‘flow field’ V (x ′, y ′) in (3.10). The vortex stability condition listed in table 1 will then
readily apply.

4. Analyses of typical slender conical bodies
The above flow model and stability theory are used in this section to analyse

the stability of symmetric vortices over a number of typical slender conical bodies.
Comparisons with experimental data are made whenever available.

4.1. Slender circular cones

A circular cone of semi-apex angle ε at an angle of attack α and no sideslip is
considered. Figure 13 shows the circular cross-section of the body at a given distance
from the apex, where a is the radius of the circular cross-section, hW and hL are the
heights of the windward and leeward splitter plates that may be added to the cone.
For the discussions in this subsection, hW and hL are zero. The separation lines are
postulated to be symmetric with respect to the incidence plane Oxz. The position of
the separation line OS1 is specified by the angle θ0 in the (x, y)-plane measured in
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Figure 13. Stationary vortex line for a circular cone with or without fins, K = 5.5591.

the anti-clockwise direction starting from the leeward side end of the cone. In the
cross-flow plane, the initially stationary symmetric vortices of strength Γ are located
at Z1 and Z2. By the method presented in the proceeding sections, the velocity at any
point Z = x + iy except at Z1 and Z2 is given in the complex velocity form

u − iv = Un

(
1 − a2

Z2

)
+

iΓ

2π

(
1

Z − Z1

− 1

Z − a2/Z1

− 1

Z − Z2

+
1

Z − a2/Z2

)

+
Una

KZ
− UnZ

aK
. (4.1)

On the right-hand side of the above equation, the first two terms are the U1 term due
to the normal velocity component of the free-stream flow Un, and the last two terms
are Up and U c due to the axial velocity component of the freestream flow Ua . The
tangential velocity on the body contour is obtained by substituting Z = aeiθ in (4.1).

The velocity at the vortex point Z1 is obtained by removing the induced velocity
term due to the vortex at Z1 itself, i.e.

u − iv = Un

(
1 − a2

Z2
1

)
+

iΓ

2π

(
1

Z1 − a2/Z2

− 1

Z1 − Z2

− 1

Z1 − a2/Z1

)

+
Una

KZ1

− UnZ1

aK
. (4.2)

The stationary symmetric vortex position Z0 and the vortex strength Γ are
determined by setting the vortex velocity in (4.2) to zero at Z0 and requiring that the
flow velocity given by (4.1) be zero at a separation point Z = aeiθ0 on the wall.

As an example, consider the case of a circular cone with semi-angle ε = 8◦ at an
angle of attack α = 38◦, corresponding to K = 5.5591. Figure 13 shows a cross-section
of the body. The solid lines off the circular body are locations where the two symmetric
vortices can be stationary while resulting in a flow field with symmetric separation
points on the body surface. As the vortices move away from the rear stagnation
point along the stationary path, the vortex strength increases monotonically and the
separation angle increases from 0◦ to about 100◦. Further movement along the path
results in a flow field that has no separation point on the surface of the circular body.
This is marked by the dot-dashed lines in figure 13.

The stationary symmetric vortex positions obtained by the present analytical
method for different values of the similarity parameter K and the separation angle
θ0 = 34◦ are compared in figure 14 with the numerical solutions given by Dyer
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et al. (1982), who used Bryson’s vortex line model for the slender circular cone in an
incompressible inviscid flow. The results agree well at large K values. The differences
at lower K values may be attributed to the differences in the models used by the two
methods. Figure 14 also shows the vortex strength vs. K for this case.

Figure 15 shows the dimensionless divergence D0 and the dimensionless Jacobian J0

at (x0, y0) versus the separation angle θ0 for the three-dimensional circular cone case
when K = 5.5591. For simplicity, D0 and J0 in figure 15 and all other figures denote
the dimensionless values D0L/Un and J0L

2/U 2
n , respectively, where L is a length scale.

In this case L = a. Unlike in the two-dimensional case, D0 is non-zero for both the
symmetric and anti-symmetric perturbations. This non-zero D0 is produced by U c in
(3.4), which is induced by the axial component Ua of the incoming flow and is valid
for all the slender conical bodies. The other terms of the vortex velocity expression
(4.2) have no contribution to D0. Thus, we have D0 = −2Un/aK , which is always
negative. Consequently, a pair of symmetric vortices over a slender conical body are
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Figure 16. Divergence and Jacobian vs. similarity parameter for a circular cone, θ0 = 34◦.

stable, neutrally stable or unstable, when the Jacobian J0 > 0, J0 = 0, or J0 < 0,
respectively, according to the stability conditions listed in table 1.

Figure 15 shows that the Jacobian J0 for symmetric perturbations is always greater
than zero and the Jacobian J0 for anti-symmetric perturbations is always less than
zero for K = 5.5591, indicating that the symmetric vortices over the circular cone are
stable to symmetric perturbations and unstable to anti-symmetric perturbations. Thus,
the initially symmetric vortex flow over the slender circular cone tends to become
asymmetric. This agrees with the well-known experimental results, e.g. Asghar et al.
(1994).

The dependence of the vortex stability on the similarity parameter K for a fixed
separation position θ0 = 34◦ is shown in figure 16. It is seen that the vortex instability
increases monotonically as K increases. For a circular cone of a given apex angle, this
means that the asymmetry tendency for the initially symmetric vortex pair increases
as the angle of attack α increases.

Figure 14 shows that the vortex coordinates x and y remain close to the conical
body. This indicates that the slenderness assumption of the body–vortex combination
is good even for large values of K and the separation angle. This is true for all other
cases studied in this paper.

4.2. Slender circular cones with fins

The two-dimensional analyses in § 2.3 show that adding a flat-plate fin of sufficient
length to the rear end of a circular cylinder stabilizes the symmetric vortices behind
the circular cylinder under anti-symmetric perturbations. In three dimensions this is
equivalent to adding a triangular flat-plate fin on the leeward side of the circular
cone in the symmetry plane. In general, a windward side fin of this type may also be
added. A cross-section of a circular cone with both the leeward and windward fins
corresponds to a two-dimensional circular cylinder of radius a with a leading fin and
a trailing fin as shown in figure 13. The two fins are characterized by the heights hW

and hL measured from the centre of the cylinder. The radius of the circle and the
height of the fins must scale linearly with the distance z of the cross-section from the
nose of the circular cone. Thus, the ratios hW/a and hL/a determine the relative size
of the fins and the circular cone.
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Since the fin is located in the symmetry plane of the body, it has no effect on the
symmetric flows. The stationary symmetric vortex position and strength as function
of θ0 are the same as those of the circular cone without the fin. By using the
two-dimensional results of § 2.3, the complex velocity at the vortex point Z1 can be
obtained by adding to (2.7) the appropriate three-dimensional terms as follows:

u−iv =

[
Un(1 − σ 2/ζ 2

1 ) +
iΓ

2π

(
− 1

ζ1 − ζ2

− 1

ζ1 − σ 2/ζ1

+
1

ζ1 − σ 2/ζ2

)](
dζ

dZ

)
1

− iΓ

4π

(
d2Z

dζ 2

)
1

(
dζ

dZ

)2

1

− UnZ1

aK
+

Una

KZ1

. (4.3)

The conformal mapping relation (2.6) still applies, but the formulas for Xm and σ

must be modified to include the windward splitter plate, i.e.

Xm =

(
a2 + h2

L

)
4hL

−
(
a2 + h2

W

)
4hW

, σ =

(
a2 + h2

L

)
4hL

+

(
a2 + h2

W

)
4hW

.

Asghar et al. (1994) gives wind tunnel test results for a circular cone of semi-
apex angle ε = 8◦ with a leeward fin of hL/a = 2.0 at an angle of attack α = 35◦

(K = 4.9822). The Reynolds number based on the base diameter D is ReD = 1.42×105.
The separation angle is estimated to be 85◦ < θ0 < 95◦. The measured circumferential
pressure distribution in a cross-section and the distribution of the ratio of side force
to normal force along the axis of the circular cone indicate that the flow is asymmetric
without the fin but becomes symmetric when the fin is added. The present stability
analyses are applied to this experimental case. Figure 17 shows the dependence of
D0 and J0 on hL/a with K = 4.9822 at θ0 = 85◦. At this separation angle, the
vortex flow changes from unstable to stable at a critical fin height hL/a = 1.7828.
Similar calculations are performed for θ0 = 95◦ and the critical fin height is found
to be hL/a = 2.3833. Considering the uncertainties of the separation angle in the
experiment, the present analytical result agrees well with the experimental result by
Asghar et al. (1994) that a fin of hL/a = 2 largely suppresses the vortex asymmetry
that is present on the cone without the fin.
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Figure 18 shows the dependence of the critical height of the leeward fin on the
circular cone on the separation angle θ0 for K = 5.5591. At this value of K , the critical
height of the leeward fin increases with θ0 and increases rapidly when θ0 approaches
100◦.

An additional flat-plate triangular fin on the windward side is needed to suppress
the vortex asymmetry when the separation point is at θ0 � 100◦ and K = 5.5591. For
this case, again the corresponding divergence D0 is always negative. The Jacobian
for a symmetric perturbation is always positive. Figure 19 shows the variation of J0

for anti-symmetric perturbations versus the fin heights hL/a or hW/a for θ0 = 100◦

and K = 5.5591. The line with circles in figure 19 shows J0 versus the leeward fin
size hL/a when a windward fin is not used (hW/a = 0). Although a leeward fin
with hL/a > 2.5 greatly improves the stability of the vortices, a leeward fin alone
cannot suppress vortex asymmetry whatever its size. The line with triangles shows J0

versus hW/a when the leeward fin is fixed with hL/a = 2.0. Adding a windward fin
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Figure 20. Divergence and Jacobian vs. similarity parameter for a flat-plate delta wing.

does not improve the stability of the vortices in this case. With a larger leeward fin
hL/a = 3.0, as shown by the line with squares in figure 19, however, the addition of
a windward fin of the size hW/a � 2.2022 makes the initial unstable vortices stable.
Further calculations indicate that if hL/a � 2.6295, there exists a windward fin of
finite height that suppresses the vortex asymmetry, otherwise no such windward fin
exists. Similarly, if hW/a � 2.1852, there exists a leeward fin of finite height that
suppresses the vortex asymmetry, otherwise no such leeward fin exists. If an equal
height is required for the leeward and windward fin to suppress the vortex asymmetry,
hL/a = hW/a � 2.7259.

4.3. Slender flat-plate delta wing

The stability of the stationary vortex pair over a slender flat-plate delta wing was
studied by Huang & Chow (1996) using the same simplified vortex model but a
different method of stability analysis. They gave the stationary symmetric vortex
position and strength versus K and showed that the vortex flow is stable to small
perturbations in the region 0.2 � K � 2.0. The present stability theory is a convenient
way to study this problem. The stationary vortex position and strength calculated
by the present theory (Cai, Liu & Luo 2001b) exactly overlap with the solutions by
Huang & Chow (1996) in the range of K calculated by them. However, an extended
range of K from 0 to 10 is investigated in the present study.

Figure 20 shows that the symmetric vortex pair is stable to small symmetric and
anti-symmetric perturbations for the entire range 0 < K � 10. The degree of stability
decreases monotonically as K increases and neutral stability is approached as K

becomes large. Stahl (1993) carried out flow-visualization experiments in a water
tunnel. The Reynolds number based on the length of the model is ReL = 2.8 × 104.
The delta wing model has sharp edges, a semi-apex angle ε = 8◦, and angle of attack
α = 38◦ (i.e. K = 5.5591). The experiments show that the leading-edge separation
vortices over the wing remain symmetric before vortex breakdown occurs on the wing.
This agrees with the predictions of figure 20.

Smith & Clark (1975) showed that the two-dimensional inviscid incompressible flow
around a flat plate normal to the free-stream velocity has no stationary symmetric
vortices behind the plate. In the corresponding three-dimensional case, however, such
stationary symmetric vortices do exist over the slender flat-plate delta wing. The



Stability of vortices over slender bodies 87

mechanism for the existence of such vortices in the three-dimensional case is the
velocity U c in (3.4) induced by the axial component of the free-stream velocity at
the vortex, which tends to pull the vortex pair towards the centreline of the flat-plate
delta wing.

Under anti-symmetric perturbations, the symmetric vortex pair is unstable for the
slender circular cone and is stable for the slender flat-plate wing. The reason for this
difference is due to the thickness effect of the circular cone in both the U1 and U2

parts of the solution discussed in § 3. The instability effect due to thickness of the
circular cone in the normal flow part is similar to that for the circular cylinder in
the free-stream flow, which is to push the vortices away from the body. In addition,
the thickness of the circular cone also causes an effective expansion of the flow by
a source term given in (3.7). In the light of this, flow suction at the surface of the
circular cone might be used to help stabilize the symmetric vortex pair at high angles
of attack.

4.4. Slender flat-plate delta wing with fin

Shanks (1963) in his subsonic flow measurements found that the leading-edge
symmetric vortices over the flat-plate delta wing with ε = 6◦ and a centreline spline
of height h/s = 0.5 became asymmetric at α � 24◦. This contradicts the observations
by Stahl et al. (1992). Ericsson (1992) claimed that the vortex asymmetry was not due
to hydrodynamic instability but rather probably due to asymmetric reattachment in
the presence of the centreline spline on the leeward side of Shanks’ wing model. This
controversy leads to the following study of vortex stability over the delta wing with
a triangular flat-plate fin on the leeward side of the wing.

The contour of the slender flat-plate delta wing with a fin of height h in the
cross-flow plane is mapped conformally into a circle by the following consecutive
transformations:

Z =
1

2

(
ρ − s2

ρ

)
, (4.4)

1

2

(
ρ +

s2

ρ

)
− ξm =

1

2

(
ζ +

σ 2

ζ

)
, (4.5)

where

ξm =
(s − hs)

2

4hs

, σ =
(s + hs)

2

4hs

, hs = h + (h2 + s2)1/2.

Here, the free-stream flow velocity Un in the plane Z is transformed into Un/2 in the
plane ζ . The complex velocity at the vortex Z1 in the plane Z is given by (4.3) with
Un replaced by Un/2 and a replaced by s. The last term in (4.3) must be removed.

The divergence D0 and the Jacobian J0 at the stationary vortex position Z0 under
symmetric and anti-symmetric perturbations are evaluated from the complex velocity
expression, and shown in figure 21 as a function of the fin height h/s for K = 4.0. It
is seen that D0 and J0 are constants under symmetric perturbations as they should be.
Under anti-symmetric perturbations, J0 begins with a positive value but decreases to
zero as h/s increases to 0.2216. It then becomes negative and remains negative until
h/s = 1.2474. Thus, according to our stability theory, adding a small leeward side fin
in the range 0.2216 < h/s < 1.2474 causes the initially stable vortices over the delta
wing to become unstable. Only when h/s > 1.3059 will the fin start to enhance the
stability of the vortices compared to without the fin.

The front part of Shanks’ wing model, from the apex as far back as x = c0/2
(c0 is the root chord of the wing), resembles a flat-plate delta wing with a flat-plate
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Figure 21. Divergence and Jacobian vs. fin height for a flat-plate delta wing
with fin, K = 4.0.

triangular fin of height h/s ≈ 0.5. In the rear part of the model, 1/2 � x/c0 � 1,
the centreline spline has a constant height equal to that at x = c0/2. In order
to compare with Shank’s experimental setup, two cases are studied by the present
method: (i) h/s = 0.2 and (ii) h/s = 0.5. When h/s = 0.2, the onset of the vortex
flow asymmetry is at K = 4.4414, and when h/s = 0.5, the onset is at K = 2.4929.
The experimental onset for Shanks’ model is at K = 4.2361. These results strongly
suggest that the vortex asymmetry over Shanks’ delta wing and most probably other
slender conical bodies is due to hydrodynamic instability.

4.5. Slender elliptic cone

The flat-plate delta wing and the circular cone can be seen as limiting cases of an
elliptic cone of thickness ratio τ (half-thickness/semi-span) as τ approaches 0 and 1,
respectively. It is interesting to investigate how the stability property of the symmetric
vortex flow over the slender elliptic cone changes from unstable to stable as the
thickness ratio decreases from 1 to 0.

By using the conformal mapping relations already derived in § 2.4, the complex
velocity of the vortex at Z1 for the three-dimensional elliptic cone can be obtained as

u − iv =

[
Un

2
(1 − 1/ζ 2

1 ) +
iΓ

2π

(
− 1

ζ1 − ζ2

− 1

ζ1 − 1/ζ1

+
1

ζ1 − 1/ζ2

)](
dζ

dZ

)
1

− iΓ

4π

(
d2Z

dζ 2

)
1

(
dζ

dZ

)2

1

− UnZ1

bK
+

1

2π

n∑
j=1

Qj

Z1 − Zj

. (4.6)

Stahl (1993) presented top and side views of the vortex configurations on the
leeward side of the delta wing and the elliptic cones with the thickness ratio τ = 0.40,
0.65 and 1.0, for ε = 8◦ at an angle of attack α = 38◦ (i.e. K = 5.5591). The main
results showed that the degree of asymmetry of the vortex flow behind the elliptic
cones decreases as the cone becomes flatter.

To compare with the experimental observations, figure 22 plots D0 and J0 versus τ

for the slender elliptic cone for K = 5.5591 and θ0 = 90◦. The vortices change from
being unstable to stable as τ decreases from 1 to 0. The critical thickness ratio for
this transition is τ = 0.389. The agreement with Stahl’s experimental observations is
good considering the uncertainty in the separation position θ0 in the experiments.
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Using tuft-grid surveys at low speeds, Bird (1969) observed that the asymmetric
vortex flow over a slender flat-plate delta wing model with a rounded leading edge and
a semi-apex angle ε = 3.5◦ occurs at α � 15◦, which disagrees with the observations
by Stahl et al. (1992), who used wing models with sharp leading edges. To investigate
this controversy, a slender elliptic cone of thickness ratio τ = 0.1 is considered for
K = 4.0. The separation point may vary slightly around the round leading edge of the
elliptic cone wing. Figure 23 plots the divergence D0 and Jacobian J0 vs. the separation
angle θ0. The vortices are stable when the separation is exactly at the leading edge
of the wing (θ0 = 90◦). When the separation point moves from the leading edge to
the windward side (θ0 > 90◦) the symmetric vortex pair remains stable, but when
the separation point moves to the leeward side of the leading edge (θ0 < 90◦), the
vortices become less stable. They become neutrally stable at θ0 = 89.17◦ and unstable
when θ0 < 89.17◦. The coordinates of this critical separation point (θ0 = 89.17◦)
are x/b = 0.014337 and y/b = 0.989668. They are very close to the coordinates
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Figure 24. Velocity of a vortex under anti-symmetric perturbations for the flow over an
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Figure 25. As figure 24 but for θ0 = 85◦ (unstable case).

of the leading edge, x/b = 0 and y/b = 1.0. Bird (1969) did not provide details
of his wing profile nor measurements of separation angles. If his wing model were
to be represented by our elliptic cone with τ = 0.1, the critical separation angle
would be θ0 = 89.3◦ for the experimental values ε = 3.5◦ and α = 15◦ (K = 4.38).
The asymmetry observed by Bird (1969) may be due to such slight changes in the
separation position on the round leading edge of his experimental models. This
agrees with the experimental results of Lim et al. (2001) on a flat-plate wing of ogive-
shaped planform with sharp/rounded tip and edges. For lack of experimental data on
the separation position, no further quantitative comparison of the present analyses
with Bird’s experimental results is made here. It is clear from the computations,
however, that the symmetry configuration of the leading-edge separated vortex flow
over a highly swept delta wing can be controlled by slightly changing the separation
position around the leading edge.

To appreciate the physical meaning of the stability conditions in terms of D0 and
J0, figures 24 and 25 show the vortex velocity field given by (4.6) under anti-symmetric
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perturbations for the separation positions θ0 = 90◦ and 85◦, respectively. Compared to
the two-dimensional cases shown in figures 7 and 8, the velocity vectors in figure 24
are drawn into the stationary point while circling around it. This is because the
divergence D0 is negative at the stationary point. Because of the positive J0, the
eigenvalue for the motion of the vortex contains an imaginary part that gives rise to
the oscillatory motion.

Figure 25 shows an unstable case when J0 < 0. Although D0 is still negative in
this case, a negative J0 causes at least some velocity vectors to leave the stationary
point, which leads to possible runaway of the vortex when slightly perturbed from its
stationary location, similar to the situation shown in figure 7.

5. Conclusions
A general stability condition for vortices in an arbitrary two-dimensional flow is

developed. This condition reproduces results on the stability of a pair of vortices
behind a circular cylinder initially given by Föppl (1913) and later corrected by Smith
(1973). This condition can be easily applied analytically or numerically to complex
flow problems. It is applied to the problem of symmetric vortices behind circular
cylinders with or without rear splitter plates and also to elliptic cylinders. A conical
slender-body theory is then developed to reduce the study of stability of symmetric
vortices over slender conical bodies at high angles of attack to a two-dimensional
problem where the general stability condition may be applied. Slender circular cones
and highly swept delta wings with and without fins, and slender elliptic cones of
various eccentricities are studied. The following conclusions are drawn.

(a) The stability of any vortex or a vortex system for any given mode of small
motion in a two-dimensional space can be determined by calculating the Jacobian
and divergence of the vortex velocity field in terms of the location of the vortex under
consideration. The stability conditions are listed in table 1.

(b) In an inviscid model with two concentrated symmetric vortices behind a circular
or elliptic cylinder, no stationary points exist for which the separation angle is equal
to or greater than 90◦ measured from the rear stagnation point of the cylinder.
For three-dimensional circular or elliptic cones, however, stationary points exist for
separation angles larger than 90◦.

(c) A pair of stationary symmetric vortices behind a circular or elliptic cylinder
is neutrally stable to symmetric perturbations, and is unstable to anti-symmetric
perturbations. Adding a splitter plate of sufficient length behind a circular cylinder
makes the vortices neutrally stable to anti-symmetric perturbations. However, a splitter
plate of a short length below a critical length has destabilizing effects.

(d) It is proven that a pair of stationary symmetric vortices behind any two-
dimensional profile is unstable or at best neutrally stable because the divergence of
the vortex velocity field at the symmetric stationary points is always zero.

(e) Stationary symmetric vortices over circular cones are unstable to small anti-
symmetric perturbations. This instability can be suppressed by adding a flat-plate
triangular fin of sufficient height in the incidence plane of the cone. When the
separation lines are located on the leeward side of the cone, a fin on the leeward side
is sufficient. When the separation lines are on the windward side of the cone, fins
on both leeward and windward sides are needed to suppress the vortex asymmetry.
However, a fin of very low height added to a slender circular cone or a flat-plate delta
wing destabilizes the vortex flow.
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(f) For a highly swept sharp-edged flat-plate delta wing, the vortex flow over the
wing is stable to small perturbations and thus remains symmetric before vortex
breakdown occurs on the wing. However, with round leading edges, vortices are
sensitive to slight changes of the separation position around the leading edge. A
slight shift from the leading edge to a nearby point on the leeward side of the wing
may lead to the onset of vortex asymmetry at some high angle of attack.

(g) For slender elliptic cones of various thickness ratios, the degree of vortex
asymmetry decreases monotonically as the thickness ratio decreases from 1 to 0.
There is a critical thickness ratio for a given similarity parameter and separation
angle.

The authors are greatly indebted to the reviewers and the associate editor, Pro-
fessor Sanjiva Lele, for their valuable comments and suggestions which significantly
improved the quality of this paper.

Appendix. Proof of D0 = 0 for any pair of symmetric vortices in two dimensions
The complex velocity of a general Föppl problem with a circular cylinder of radius

a and two vortices, Γ1 at ζ1 and Γ2 at ζ2, can be written as

u − iv = U

(
1 − a2

ζ 2

)
− iΓ1

2π

[
1

ζ − ζ1

− 1

ζ − a2/ζ1

]
− iΓ2

2π

[
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− 1
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]
.

(A 1)

For vortices of strengths −Γ and Γ , the vortex velocity for the vortex at ζ1 is then

u − iv = U
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+
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Equations (A 1) and (A 2) reduce to (2.1) and (2.2), respectively, for a pair of symmetric
vortices and a unit circle in the original Föppl problem.

Let ζ0 and ζ0 be points on the Föppl lines (symmetric stationary points). The
vortex velocity for symmetric perturbations of the vortices is obtained by substituting
ζ1 = ζ0 + �ζ = ζ and ζ2 = ζ0 + �ζ = ζ into (A 2),

u − iv = F (ζ, ζ ) = U
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iΓ

2π
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]
. (A 3)

The vortex velocity for anti-symmetric perturbations of the vortices is obtained by
substituting ζ1 = ζ0 + �ζ = ζ and ζ2 = ζ0 − �ζ = 2ζ0 − ζ into (A 2),

u − iv = F (ζ, ζ ) = U
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(A 4)

Although F (ζ, ζ ) is not analytic with respect to ζ as a whole, F (ζ, ζ ) can be regarded
as partial functions of ζ and ζ and it is easily shown by direct differentiation and the
chain rule that (

∂u

∂ξ
+
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∂η

)
+ i

(
∂u

∂η
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∂ξ

)
= 2

∂F

∂ζ
.

It is easily verified that the real part of ∂F/∂ζ is zero at any symmetric stationary
point for both the symmetric and anti-symmetric perturbation cases given in (A 3)
and (A 4), proving that D0 is zero for the Föppl problem.
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The flow field past any two-dimensional profile can be obtained from that of the
Föppl problem via a conformal mapping from ζ to Z. Stationary points are preserved
under such a conformal mapping. The vortex velocity field in the Z = x + iy plane is
then given by (2.7), which can be written in terms of F (ζ, ζ ) for the Föppl problem
as

u − iv = F (ζ, ζ )
dζ

dZ
− iΓ

4π

d2Z

dζ 2

(
dζ

dZ

)2

. (A 5)

Notice that if ζ = f (Z) is analytic, then dζ/dZ exists and in addition, dζ/dZ =
(dζ/dZ). Again by direct differentiation and the chain rule, we obtain(
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Since the real part of ∂F/∂ζ is zero at any symmetric stationary point for both
symmetric and anti-symmetric perturbations in the Föppl problem, the above equation
proves that D is zero for a pair of vortices at their symmetric stationary points in the
flow past any two-dimensional profile.
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Goldstein, S. 1938 Modern Developments in Fluid Dynamics, Vol. II, pp. 552–553. Oxford University
Press.



94 J. Cai, F. Liu and S. Luo

Huang, M. K. & Chow, C. Y. 1996 Stability of leading-edge vortex pair on a slender delta wing.
AIAA J. 34, 1182–1187.

Keener, E. R. & Chapman, G. T. 1977 Similarity in vortex asymmetries over slender bodies and
wings. AIAA J. 15, 1370–1372.

Lamb, H. 1932 Hydrodynamics, 6th edn., p. 223. Cambridge University Press.
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D’Études Et De Recherches Aeronautiques, Jan.–Feb.

Levy, Y., Hesselink, L. & Degani, D. 1996 Systematic study of the correlation between geometrical
disturbances and flow asymmetries. AIAA J. 34, 772–777.

Lim, T. T., Lua, K. B. & Luo, S. C. 2001 Role of tip and edge geometry on vortex asymmetry.
AIAA J. 39, 539–543.

Lowson, M. V. & Ponton, A. J. C. 1992 Symmetry breaking in vortex flows on conical bodies.
AIAA J. 30, 1576–1583.

Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics, 5th edn., p. 370. Macmillan.

Ng, T. T. 1990 Effect of a single strake on the fore body vortex asymmetry. J. Aircraft 27, 844–846.

Pidd, M. & Smith, J. H. B. 1991 Asymmetric vortex flow over circular cones. In Vortex Flow
Aerodynamics, AGARD CP-494, July 1991, pp. 18-1–18-11.

Polhamus, E. C. 1971 Predictions of vortex-lift characteristics by a leading-edge suction analogy.
J. Aircraft 8, 193–199.

Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number.
J. Fluid Mech. 10, 345–356.

Rossow, V. L. 1978 Lift enhancement by an externally trapped vortex. J. Aircraft 15, 618–625.

Saffman, P. G. 1992 Vortex Dynamics, pp. 22, 43. Cambridge University Press.

Shanks, R. E. 1963 Low-subsonic measurements of static and dynamic stability derivatives of six
flat-plate wing having leading-edge sweep angles of 70◦ to 84◦. NASA TN D-1822.
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